Monday, September 4, 2023

AI - to experience both tragedy and comedy,

 Jorge Luis Borges once wrote that to live in a time of great peril and promise is to experience both tragedy and comedy, with “the imminence of a revelation” in understanding ourselves and the world. Today our supposedly revolutionary advancements in artificial intelligence are indeed cause for both concern and optimism. Optimism because intelligence is the means by which we solve problems. Concern because we fear that the most popular and fashionable strain of A.I. — machine learning — will degrade our science and debase our ethics by incorporating into our technology a fundamentally flawed conception of language and knowledge. 


OpenAI’s ChatGPT, Google’s Bard and Microsoft’s Sydney are marvels of machine learning. Roughly speaking, they take huge amounts of data, search for patterns in it and become increasingly proficient at generating statistically probable outputs — such as seemingly human-like language and thought. These programs have been hailed as the first glimmers on the horizon of artificial general intelligence — that long-prophesied moment when mechanical minds surpass human brains not only quantitatively in terms of processing speed and memory size but also qualitatively in terms of intellectual insight, artistic creativity and every other distinctively human faculty. That day may come, but its dawn is not yet breaking, contrary to what can be read in hyperbolic headlines and reckoned by injudicious investments. The Borgesian revelation of understanding has not and will not — and, we submit, cannot — occur if machine learning programs like ChatGPT continue to dominate the field of A.I. However useful these programs may be in some narrow domains (they can be helpful in computer programming, for example, or in suggesting rhymes for light verse), we know from the science of linguistics and the philosophy of knowledge that they differ profoundly from how humans reason and use language. These differences place significant limitations on what these programs can do, encoding them with ineradicable defects. It is at once comic and tragic, as Borges might have noted, that so much money and attention should be concentrated on so little a thing — something so trivial when contrasted with the human mind, which by dint of language, in the words of Wilhelm von Humboldt, can make “infinite use of finite means,” creating ideas and theories with universal reach. The human mind is not, like ChatGPT and its ilk, a lumbering statistical engine for pattern matching, gorging on hundreds of terabytes of data and extrapolating the most likely conversational response or most probable answer to a scientific question. On the contrary, the human mind is a surprisingly efficient and even elegant system that operates with small amounts of information; it seeks not to infer brute correlations among data points but to create explanations. For instance, a young child acquiring a language is developing — unconsciously, automatically and speedily from minuscule data — a grammar, a stupendously sophisticated system of logical principles and parameters. This grammar can be understood as an expression of the innate, genetically installed “operating system” that endows humans with the capacity to generate complex sentences and long trains of thought. When linguists seek to develop a theory for why a given language works as it does (“Why are these — but not those — sentences considered grammatical?”), they are building consciously and laboriously an explicit version of the grammar that the child builds instinctively and with minimal exposure to information. The child’s operating system is completely different from that of a machine learning program. Indeed, such programs are stuck in a pre-human or non-human phase of cognitive evolution. Their deepest flaw is the absence of the most critical capacity of any intelligence: to say not only what is the case, what was the case and what will be the case — that’s description and prediction — but also what is not the case and what could and could not be the case. Those are the ingredients of explanation, the mark of true intelligence. Here’s an example. Suppose you are holding an apple in your hand. Now you let the apple go. You observe the result and say, “The apple falls.” That is a description. A prediction might have been the statement “The apple will fall if I open my hand.” Both are valuable, and both can be correct. But an explanation is something more: It includes not only descriptions and predictions but also counter-factual conjectures like “Any such object would fall,” plus the additional clause “because of the force of gravity” or “because of the curvature of space-time” or whatever. That is a causal explanation: “The apple would not have fallen but for the force of gravity.” That is thinking. The crux of machine learning is description and prediction; it does not posit any causal mechanisms or physical laws. Of course, any human-style explanation is not necessarily correct; we are fallible. But this is part of what it means to think: To be right, it must be possible to be wrong. Intelligence consists not only of creative conjectures but also of creative criticism. Human-style thought is based on possible explanations and error correction, a process that gradually limits what possibilities can be rationally considered. (As Sherlock Holmes said to Dr. Watson, “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”) But ChatGPT and similar programs are, by design, unlimited in what they can “learn” (which is to say, memorize); they are incapable of distinguishing the possible from the impossible. Unlike humans, for example, who are endowed with a universal grammar that limits the languages we can learn to those with a certain kind of almost mathematical elegance, these programs learn humanly possible and humanly impossible languages with equal facility. Whereas humans are limited in the kinds of explanations we can rationally conjecture, machine learning systems can learn both that the earth is flat and that the earth is round. They trade merely in probabilities that change over time. In short, ChatGPT and its brethren are constitutionally unable to balance creativity with constraint. They either over-generate (producing both truths and falsehoods, endorsing ethical and unethical decisions alike) or under-generate (exhibiting non-commitment to any decisions and indifference to consequences). Given the amorality, faux science and linguistic incompetence of these systems, we can only laugh or cry at their popularity. Dr. Chomsky and Dr. Roberts are professors of linguistics. Dr. Watumull is a director of AI at a science and technology company The New York Times Visit news.dtnext.in to explore our interactive epaper! Download the DT Next app for more exciting features! Click here for iOS Click here for Android


https://www.dtnext.in/edit/2023/03/10/ai-unravelled-the-false-promise-of-chatgpt-the-human-mind-is-not-like-chatgpt-and-its-ilk-a-lumbering-statistical-engine-for-pattern-matching-it-is-a-surprisingly-efficient-and-elegant-system-that-operates-with-small-amounts-of-information-it-seeks-not-to-infer-brute-correlations-among-data-points-but-to-create-explanations?infinitescroll=1